Structures of 1-(3,3-Dimethylamino)propyl Naphtho[2,1-b|thiophene-4-carboxylate and N-(3,3-Dimethylamino)propyl-8-methoxynaphtho $2,1-b \mid$ thiophene-4-carboxamide, Intercalators into Double-Helical DNA

By R. McKenna* and S. Neidle \dagger
Cancer Research Campaign Biomolecular Structure Unit, The Institute of Cancer Research, Sutton, Surrey SM 2 5NG, England
and W. D. Wilson
Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA

(Received 11 March 1991; accepted 17 May 1991)

Abstract

C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}, M_{r}=313 \cdot 42\), monoclinic, $P 2_{1} / c, a=11.503$ (3), $b=15.932$ (2), $c=9.133$ (2) \AA, $\beta=102 \cdot 17(2)^{\circ}, \quad V=1636 \cdot 1 \AA^{3}, \quad \lambda(\mathrm{Cu} K \alpha)=$ $1.54178 \AA, \quad \mu=1.762 \mathrm{~mm}^{-1}, \quad F(000)=664, \quad T=$ 293 (1) $\mathrm{K}, R=0.047$ for 2044 significant reflections. (2) $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}, \quad M_{r}=343 \cdot 45$, triclinic, $P \overline{\mathrm{I}}, a=$ 9.873 (2),$\quad b=13.163$ (3), $\quad c=14.065$ (3) $\AA, \quad \alpha=$ 101.33, $\beta=94.30(3), \gamma=91.35(3)^{\circ}, V=1785 \cdot 8 \AA^{3}$, $Z=4, D_{x}=1 \cdot 28 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1 \cdot 54178 \AA, \mu$ $=1.699 \mathrm{~mm}^{-1}, \quad F(000)=728, \quad T=293(1) \mathrm{K}, \quad R=$ 0.052 for 1787 significant reflections. The torsion angle between the naphthothiophene ring and the carbonyl O atom of the side chain is $5.5(4)^{\circ}$ in structure (1) and $25(2)$ and $-32(2)^{\circ}$ in the two independent molecules of (2). This difference is due to out-of-plane distortions in (2) that arise from steric hindrance between H atoms on the amide and the ring system, at position 2 .

Experimental. Both compounds were crystallized from a petroleum ether (35-60)-methylene chloride mixture to produce colourless prismatic crystals.

(1)

(2)

[^0]0108-2701/91/112511-03\$03.00

Crystals used for the analysis had dimensions $0.2 \times$ $0.2 \times 0.1 \mathrm{~mm}$ (1) and $0.15 \times 0.20 \times 0.10 \mathrm{~mm}$ (2). Accurate cell dimensions were obtained by leastsquares refinement of, in each case, 25 reflections, in the ranges $10<\theta<29^{\circ}$ (1) and $9<\theta<26^{\circ}$ (2). Intensity data were collected on an Enraf-Nonius CAD-4 diffractometer using graphite-monochromated $\mathrm{Cu} K \alpha$ radiation and an $\omega-2 \theta$ scan technique with max. scan times of $120 \mathrm{~s}(1)$ and $150 \mathrm{~s}(1)$. In both cases, unique data sets were collected. Data collection ranges were for (1): $1.5<\theta<60^{\circ}$ with $0 \leq$ $h \leq 10,0 \leq k \leq 18,-13 \leq l \leq 13$; for (2): $1 \cdot 5<\theta<$ 60° with $0 \leq h \leq 11,-14 \leq k \leq 14,-15 \leq l \leq 15$. For (1), 2827 unique reflections were measured, of which 2044 had $I>3 \sigma(I)$; systematic absences, $0 k 0$, $k=2 n+1$ and $h 0 l, h=2 n+1$ were found, denoting the space group as $P 2_{1} / c$. For (2), 5376 unique reflections were obtained, with 1787 having $I>$ $1 \cdot 5 \sigma(I)$. Monitoring of standard reflections during the data collections showed no significant crystal decay. Intensity data were corrected for Lorentz, polarization and (post structure refinement) absorption effects using an empirical absorption correction (Walker \& Stuart, 1983). Max. and min. transmission values were 1.12 and 0.87 for (1) and $1.15,0.83$ for (2). The structures were solved by direct methods: (1) using MULTAN82 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982) and (2) using SHELXS86 (Sheldrick, 1986) with two independent molecules in the asymmetric unit. Refinements were by full-matrix least squares on F. Non-H atoms were refined anisotropically. In the case of (1), H-atom positions were located in difference Fourier maps and were included in the later rounds of refinement with their thermal parameters fixed at $5 \cdot 0 \AA^{2}$. H -atom positions for (2) were generated from standard geometric considerations with $\mathrm{C}-\mathrm{H}$ bond lengths of $0.95 \AA$ and temperature factors of $5.0 \AA^{2}$.

Table 1. Fractional coordinates and equivalent isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {cq }}\left(\AA^{2}\right)$
S1	0.45422 (5)	$0 \cdot 21350$ (4)	0.76746 (8)	$3 \cdot 85$ (1)
C2	0.4070 (3)	$0 \cdot 3115$ (2)	$0 \cdot 8061$ (3)	$4 \cdot 48$ (6)
C3	0.4683 (2)	0.3741 (2)	0.7594 (3)	$4 \cdot 24$ (6)
C4	0.5589 (2)	$0 \cdot 3435$ (2)	0.6864 (3)	$3 \cdot 40$ (5)
C5	0.6399 (2)	$3 \cdot 3914$ (2)	0.6205 (3)	$3 \cdot 60$ (5)
C6	0.6394 (3)	0.4801 (2)	0.6163 (4)	4.74 (7)
C7	0.7174 (3)	$0 \cdot 5222$ (2)	0.5507 (4)	5.64 (8)
C8	0.7992 (3)	0.4797 (2)	0.4873 (4)	$5 \cdot 67$ (7)
C9	$0 \cdot 8032$ (3)	0.3936 (2)	0.4883 (4)	4.81 (7)
C10	$0 \cdot 7228$ (2)	0.3469 (2)	0.5540 (3)	3.74 (5)
C11	0.7227 (2)	$0 \cdot 2581$ (2)	0.5555 (3)	3.76 (5)
C12	0.6449 (2)	$0 \cdot 2125$ (2)	$0 \cdot 6177$ (3)	$3 \cdot 27$ (5)
C13	0.5617 (2)	0.2563 (2)	$0 \cdot 6833$ (3)	$3 \cdot 14$ (5)
C14	0.6420 (2)	$0 \cdot 1191$ (2)	$0 \cdot 6142$ (3)	$3 \cdot 57$ (5)
O15	0.5695 (2)	0.0776 (1)	0.6585 (2)	4.35 (4)
O16	0.7296 (2)	0.0870 (1)	0.5564 (2)	$4 \cdot 41$ (4)
C17	0.7323 (2)	-0.0042 (2)	0.5433 (3)	$4 \cdot 12$ (6)
C18	0.8399 (2)	-0.0230 (2)	0.4803 (3)	$4 \cdot 12$ (6)
C19	$0 \cdot 8638$ (2)	-0.1160 (2)	0.4513 (3)	4.06 (6)
N20	0.8680 (2)	-0.1681 (1)	0.5838 (3)	$4 \cdot 10$ (5)
C21	$0 \cdot 8579$ (3)	-0.2568 (2)	0.5421 (4)	6.65 (9)
C22	0.9811 (3)	-0.1532 (3)	$0 \cdot 6849$ (4)	$7 \cdot 0$ (1)
Compound (2)				
S1A	0.4909 (4)	$0 \cdot 4790$ (3)	0.7622 (3)	4.4 (1)
C2A	0.498 (1)	0.4043 (9)	0.8510 (9)	$5 \cdot 0$ (4)
C3A	$0 \cdot 600$ (2)	0.4389 (9)	0.9216 (9)	4.4 (4)
C4A	0.680 (1)	0.5258 (9)	0.9038 (9)	3.7 (4)
C5A	0.796 (1)	0.5764 (9)	0.9684 (9)	$3 \cdot 8$ (4)
C6A	0.844 (1)	0.5512 (9)	1.0563 (8)	$3 \cdot 5$ (4)
C7A	0.955 (2)	0.606 (1)	$1 \cdot 1053$ (9)	4.9 (4)
C8A	1.022 (1)	0.683 (1)	1.070 (1)	$4 \cdot 6$ (4)
C9A	0.981 (1)	0.7054 (9)	0.9816 (9)	4.5 (4)
Cl 10 A	0.863 (1)	0.653 (1)	0.9297 (8)	$4 \cdot 3$ (4)
$\mathrm{Cl1} A$	$0 \cdot 818$ (1)	0.6800 (9)	0.8416 (9)	$3 \cdot 7$ (4)
Cl 2 A	0.704 (1)	0.6328 (8)	0.7825 (8)	$3 \cdot 1$ (3)
Cl 3 A	0.636 (1)	0.5525 99)	0.8152 (8)	$2 \cdot 9$ (3)
C14A	0.645 (1)	0.6592 (9)	0.6865 (8)	$3 \cdot 5$ (3)
O15A	0.5222 (8)	0.6459 (7)	0.6625 (6)	5.0 (3)
N16A	0.734 (1)	$0 \cdot 7022$ (8)	0.6401 (7)	$5 \cdot 1$ (3)
Cl 7 A	0.693 (2)	0.751 (1)	0.556 (1)	$7 \cdot 0$ (5)
C18A	0.739 (2)	0.696 (1)	0.469 (1)	$8 \cdot 1$ (5)
C19A	0.710 (2)	0.755 (1)	0.381 (1)	8.4 (6)
N20A	0.767 (1)	$0 \cdot 8502$ (9)	0.3977 (8)	$6 \cdot 8$ (4)
C21A	0.908 (2)	0.862 (2)	0.410 (1)	13.5 (7)
C22A	0.724 (2)	0.898 (1)	0.318 (1)	13.7 (7)
O23A	1.006 (1)	0.5900 (6)	1-1950 (6)	$6 \cdot 3$ (3)
C24A	0.946 (2)	0.517 (1)	1.2389 (9)	$5 \cdot 5$ (4)
S1B	0.9922 (4)	0.96169 (3)	0.7457 (3)	$5 \cdot 6$ (1)
C2B	0.994 (1)	1.027 (1)	0.838 (1)	$6 \cdot 0$ (4)
C3B	1.092 (1)	1.0250 (9)	0.910 (1)	$5 \cdot 0$ (4)
C4B	1.171 (1)	0.9341 (9)	0.8956 (8)	$3 \cdot 5$ (4)
C5B	1.287 (1)	0.9011 (9)	0.9529 (8)	$4 \cdot 1$ (4)
C6B	1.324 (1)	0.967 (1)	1.0443 (9)	$5 \cdot 7$ (4)
C7B	1.433 (2)	0.9414 (9)	1.0961 (8)	4.7 (4)
C8B	1.508 (2)	0.853 (1)	1.0661 (9)	5.4 (4)
C9B	1.468 (1)	0.789 (1)	0.9775 (9)	$5 \cdot 0$ (4)
C10B	1.350 (1)	0.8086 (9)	0.9189 (9)	$4 \cdot 2$ (4)
C11B	$1 \cdot 302$ (1)	0.7474 (9)	0.8259 (9)	$3 \cdot 9$ (4)
C12B	1.192 (1)	0.7753 (9)	0.7684 (9)	3.7 (4)
C13B	1.128 (1)	0.8693 (9)	0.8080 (8)	4.4 (4)
C14B	1.143 (1)	0.707 (1)	0.6728 (9)	$4 \cdot 6$ (4)
O15B	1.0245 (9)	0.7147 (7)	0.6418 (6)	$5 \cdot 5$ (3)
N16B	$1 \cdot 233$ (1)	0.6540 (8)	0.6242 (7)	4.5 (3)
C17B	$1 \cdot 199$ (1)	0.600 (1)	0.523 (1)	$5 \cdot 5$ (4)
C18B	1.272 (2)	0.642 (1)	0.450 (1)	$8 \cdot 3$ (6)
N19B	1.268 (2)	0.751 (1)	0.457 (1)	$8 \cdot 8$ (6)
N20B	1.336 (1)	0.8042 (9)	$0 \cdot 3942$ (8)	$7 \cdot 2$ (4)
C 21 B	1.288 (2)	0.779 (1)	$0 \cdot 296$ (1)	$8 \cdot 3$ (6)
C22B	$1 \cdot 344$ (2)	0.910 (1)	0.426 (1)	$10 \cdot 8$ (7)
O23B	1.494 (1)	0.9915 (6)	1-1848 (6)	5.7 (3)
C24B	1.431 (2)	1.082 (1)	$1 \cdot 232$ (1)	$7 \cdot 1$ (5)

Table 2. Bond lengths (\AA) and angles (${ }^{\circ}$) with e.s.d.'s in parentheses

			(1)	(2)	
				Molecule	Molecule B
S1	C2		1.714 (3)	1.733 (14)	1.739 (13)
S1	Cl 3		1.728 (3)	1.745 (12)	1.740 (14)
C2	C3		1.342 (4)	1.36 (2)	1.34 (2)
C3	C4		1.437 (4)	1.44 (2)	1.44 (2)
C4	C5		1.431 (4)	1.47 (2)	1.47 (2)
C4	Cl 3		1.389 (3)	1.40 (2)	1.386 (15)
C5	C6		1.413 (4)	1.39 (2)	1.42 (2)
C5	C10		1.424 (4)	1.41 (2)	1.40 (2)
C6	C7		1.356 (5)	1.37 (2)	1.34 (2)
C7	C8		$1 \cdot 382$ (5)	$1 \cdot 38$ (2)	1.41 (2)
C7	O 23		-	1.38 (2)	1.379 (14)
C8	C9		1.372 (4)	1.38 (2)	1.38 (2)
C9	C 10		1.415 (4)	1.41 (2)	1.43 (2)
C10	Cl1		1.415 (4)	1.40 (2)	1.44 (2)
Cl 1	Cl 2		1.365 (4)	$1 \cdot 40$ (2)	1.41 (2)
C12	C13		1.416 (4)	1.40 (2)	1.43 (2)
C12	C14		1.489 (3)	1.53 (2)	1.50 (2)
Cl 2	O15		$1 \cdot 199$ (3)	1.235 (14)	1.228 (15)
C14	N16		-	1.31 (2)	$1 \cdot 30$ (2)
C14	O16		1.334 (3)	-	-
N16	Cl 7		-	1.49 (2)	1.475 (15)
016	Cl 7		1.457 (3)	-	-
C17	Cl 8		1.500 (4)	1.41 (2)	1.48 (2)
C18	C 19		1.540 (4)	1.59 (2)	1.43 (2)
C19	N20		1.448 (4)	1.34 (2)	1.42 (2)
N20	C21		1.461 (4)	1.39 (2)	1.40 (2)
N20	C22		1.448 (4)	1.44 (2)	1.38 (2)
O 23	C24		-	1.38 (2)	1.43 (2)
C2	SI	C13	$91 \cdot 1$ (1)	92.2 (6)	$90 \cdot 4$ (6)
S1	C2	C3	$113 \cdot 7$ (2)	112 (1)	112 (1)
C2	C3	C4	112.0 (2)	114 (1)	115 (1)
C3	C4	C5	127.8 (2)	124 (1)	133 (1)
C3	C4	C13	111.8 (2)	112 (1)	110 (1)
C5	C4	C13	$120 \cdot 3$ (2)	124 (1)	117 (1)
C4	C5	C6	123.1 (3)	126 (1)	115 (1)
C4	C5	Cl 10	117.9 (2)	112 (1)	121 (1)
C6	C5	C10	119.0 (3)	122 (1)	124 (1)
C5	C6	C7	$120 \cdot 5$ (2)	117 (1)	117 (1)
C6	C7	C8	121.0 (3)	123 (1)	124 (1)
C6	C7	O 23	-	121 (1)	129 (1)
C8	C7	O 23	-	116 (1)	107 (1)
C7	C8	C9	$120 \cdot 8$ (3)	121 (1)	118 (1)
C8	C9	C10	$120 \cdot 3$ (3)	118 (1)	122 (1)
C5	Cl 10	C9	118.4 (2)	119 (1)	115 (1)
C5	Cl 0	Cll	119.4 (3)	123 (1)	119 (1)
C9	Cl0	Cl 1	$122 \cdot 1$ (3)	118 (1)	126 (1)
C10	Cl 1	C12	122.6 (3)	124 (1)	123 (1)
C11	Cl 2	Cl 3	118.3 (2)	116 (1)	116 (1)
Cl1	C12	C14	122.5 (2)	127 (1)	121 (1)
C13	Cl 2	C14	119.2 (2)	117 (1)	123 (1)
S1	C13	C4	$111 \cdot 3$ (2)	$110 \cdot 7$ (9)	113 (1)
S1	C13	Cl 2	$127 \cdot 2$ (2)	128.5 (9)	122.4 (9)
C4	C13	C 12	121.5 (2)	121 (1)	124 (1)
C12	C14	O16	$112 \cdot 2$ (2)		-
C12	C14	N16	-	114 (1)	117 (1)
C12	C14	O15	124.0 (2)	120 (1)	118 (1)
O15	C14	O16	123.9 (2)-	-	
015	C14	N16	-	126 (1)	125 (1)
C14	016	C17	$116 \cdot 5$ (2)	-	-
C14	N16	C17	-	122 (1)	121 (1)
016	C17	C18	$105 \cdot 4$ (2)	-	-
N16	Cl 7	C18	-	111 (1)	115 (1)
C17	C18	C19	$116 \cdot 7$ (2)	111 (1)	115 (1)
C18	C19	N20	112.4 (4)	114 (1)	112 (1)
C19	N20	C21	$110 \cdot 4$ (2)	119 (2)	116 (1)
C19	N20	C22	$107 \cdot 7$ (3)	108 (1)	113 (1)
C21	N20	C22	$109 \cdot 6$ (3)	107 (2)	110 (1)
C7	O 23	C24	-	122 (1)	116 (1)

Their contributions were included in structure-factor calculations but not refined. The final R factor for (1) was 0.047 with $w R=0.060$ using a weighting scheme of the form $1 /\left[\sigma^{2}(F)+(0.04 F)^{2}\right]^{1 / 2}$. For (2), $R=$ $0.052, w R=0.054$. In both cases the max. shift/e.s.d was <0.01 for the final least-squares cycles. Max. and min. residual electron densities in the final difference Fourier maps were 0.38 and -0.31 e \AA^{-3} for (1) and 0.29 and $-0.40 \mathrm{e} \AA^{-3}$ for (2). Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). Calculations were performed with SDP (Frenz, 1980). Final atomic coordinates are given in Table 1, bond lengths and angles in Table 2.* Figs. 1 and 2 show the molecular structures.

Related literature. The crystal structures of (1) and (2) (without the methoxy substituent) as hydrochloride salts have been reported (Wilson, Chandrasekaran, Kusuma, Boykin \& Neidle, 1987). NMR studies and earlier binding analyses of their interactions with DNA (Wilson, Wang, Kusuma, Chandrasekaran, \& Boykin, 1986) have shown that the latter compound binds an order of magnitude less strongly to DNA and is significantly less intercalated in between base pairs. This difference has been ascribed to non-coplanarity of the amide substituent with the napthothiophene ring compared to the ester.

[^1]

Fig. 1. View of compound (1) with atom-labelling scheme.

Fig. 2. View showing the two independent molecules for compound (2).

This work was supported by grants from the Cancer Research Campaign (to SN), NSF Grant DBM-8603566 (to WDW), NIH Grant SO7RR007171 (to WDW) and a NATO Collaborative Grant (to SN and WDW).

References

Frenz, B. A. (1980). Enraf-Nonius Structure Determination Package. Version 17. College Station, Texas, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). multani1/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of structures. Univ. of Göttingen, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Wilson, W. D., Chandrasekaran, S., Kusuma, S., Boykin, D. W. \& Neidle, S. (1987). J. Biomol. Structure Dyn. 5, 327-344.

Wilson, W. D., Wang, Kusama, S., Chandrasekaran, S. \& Boykin, D. W. (1986). Biophys. Chem. 24, 101-109.

[^0]: * Now at: Department of Biology, Purdue University, Lafayette, Indiana 47097, USA.
 \dagger Address correspondence to this author.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54274 (42 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

